Evaluation of the influence of the use of auxetic geometry mesh in concrete elements subjected to compression
Evaluación de la influencia del uso de malla con geometría auxética en elementos de concreto sometidos a compresión
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Atribución - No Comercial – Compartir igual (by-nc-sa): permite a los usuarios distribuir, remezclar, retocar, y crear a partir de la obra original de modo no comercial, siempre y cuando se dé reconocimiento al autor y se licencien o circulen sus nuevas creaciones u obras derivadas bajo las mismas condiciones de esta licencia.
Show authors biography
This work evaluates the influence of auxetic geometry in concrete elements subjected to compression. A total of 24 specimens were tested, 16 specimens reinforced with auxetic geometry 3D printed with polylactic acid (PLA), varying cell height and thickness. The mechanical properties obtained in these tests were compared with the results of eight (8) specimens without any reinforcement. The use of the auxetic mesh as concrete reinforcement has a significant impact on the confinement of the concrete, giving the specimens the capacity to incursion in the inelastic range, unlike that shown by the specimens without reinforcement that do not present any incursion, the auxetic prototypes showed better properties of the concrete subjected to axial load with respect to the control prototypes. Additionally, by means of the CES selector software Ansys Granta, which gathers information in a library of data on materials and allows comparisons and analysis, the amount of CO2 emissions within the life cycle of PLA was determined, it was found in this analysis that PLA presents high carbon emissions due to the considerable energy consumption required in its production. However, it is important to consider other key aspects of its life cycle, such as manufacturing, transportation and final disposal of the material, in which it shows a relatively low carbon footprint.
Article visits 154 | PDF visits 113
Downloads
Adeva, R. (2022). Todo lo Todo lo que debes saber sobre la impresión 3D y sus utilidades. https://acortar.link/IjYjkz
Álvarez, D. (2017). Aplicaciones de las propiedades auxéticas en la arquitectura. https://acortar.link/Hytdma
Brighenti, R. (2014). Smart behaviour of layered plates through the use of auxetic materials. Thin-Walled Structures, 84, 432–442. https://doi.org/10.1016/J.TWS.2014.07.017
Gohar, S., Hussain, G., Ilyas, M. & Ali, A. (2021). Performance of 3D printed topologically optimized novel auxetic structures under compressive loading: experimental and FE analyses. Journal of Materials Research and Technology, 15, 394–408. https://doi.org/10.1016/J.JMRT.2021.07.149
Granta. (2021). End of life calculations. https://acortar.link/fXdQ2S
ICONTEC. (2003). NTC Colombiana 3546. Métodos de ensayo para determinar la evaluación en laboratorio y en obra, de morteros para unidades de mampostería simple y reforzada. ICONTEC. https://acortar.link/4ExG5S
ICONTEC. (2010). NTC673 (Concretos. Ensayo de Resistencia a la Compresión de Especímenes Cilíndricos de Concreto) - Studocu. https://acortar.link/EygCk2
Jalkh, H. (2020). Morpho-Active Materials: Fabricating auxetic structures with bioinspired behavior. https://acortar.link/44SWaE
Jiménez, R. (2017). Modelización de estructuras auxéticas. [Universidad Carlos III de Madrid]. https://acortar.link/vWe79P
Luo, C., Ren, X., Han, D., Zhang, X. G., Zhong, R., Zhang, X. Y. & Xie, Y. M. (2022). A novel concrete-filled auxetic tube composite structure: Design and compressive characteristic study. Engineering Structures, 268, 114759. https://doi.org/10.1016/J.ENGSTRUCT.2022.114759
Mazaev, A. V., Ajeneza, O. & Shitikova, M. V. (2020). Auxetics materials: classification, mechanical properties and applications. IOP Conference Series: Materials Science and Engineering, 747(1), 012008. https://doi.org/10.1088/1757-899X/747/1/012008
McCormac, J., & Brown, R. (2017). Diseño de concreto reforzado . https://acortar.link/s58kI6
Patiballa, S. & Krishnan, G. (2018). Conceptual Design of Spatial Auxetic Microstructures CORE View metadata, citation and similar papers at core.ac.uk provided by Purdue E-Pubs. IUTAM, 12, 0. https://acortar.link/WXVo7f
Seo, M. S., Kim, T., Hong, G., & Kim, H. (2016). On-Site Measurements of CO2 Emissions during the Construction Phase of a Building Complex. Energies 2016, Vol. 9, Page 599, 9(8), 599. https://doi.org/10.3390/EN9080599
Soldado, E. L., González-Regueral, C. C. & González-Regueral, C. C. (2022). Vestuario y equipo para el soldado. https://acortar.link/iqb5s1
Toledo, R. (2018). La industria de la construcción está a punto de cambiar radicalmente - Alpha Hardin. https://acortar.link/orXwO0
Zahra, T. & Dhanasekar, M. (2017). Characterisation of cementitious polymer mortar – Auxetic foam composites. Construction and Building Materials, 147, 143–159. https://doi.org/10.1016/J.CONBUILDMAT.2017.04.151